જો સમીકરણ ${x^2} + \alpha x + \beta = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો
અસમતા એ $y$ ની બે પૂર્ણાક કિમતોથી સંતોષાય છે
અસમતાના બધા ઉકેલો $y \in (-4, 2)$ માં મળે
સમીકરણના ઉકેલો સમાન ચિહનોના છે
${x^2} + \alpha x + \beta > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$
જો $x$ એ વાસ્તવિક હોય તો સમીકરણ $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ ની કિંમતોનો ગણ મેળવો.
જો દ્રીઘાત સમીકરણ ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ ને $2$ પૂર્ણાક બીજો હોય તો $\theta $ ની શક્ય એવી $(0, 2\pi )$ માં બધી કિમતોનો સરવાળો $k\pi $, થાય તો $k$ ની કિમત મેળવો
એક ત્રિઘાત સમીકરણમાં $x^2$ નો સહગુણક શૂન્ય અને બાકીના સહગુણક વાસ્તવિક અને એક ઉકેલ $\alpha = 3 + 4\, i$ તથા બાકીના ઉકેલો $\beta$ અને $\gamma$ હોય તો $\alpha \beta \gamma$ ની કિમત મેળવો
જો $\alpha ,\beta$ એ સમીકરણ $x^2 -ax + b = 0$ ના ઉકેલો હોય અને $\alpha^n + \beta^n = V_n$, હોય તો
જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?